Natural convection occurs due to density differences of the fluid Non Dimensional parameters $Gr_L$ is [[Grashof number]] $Ra_L$ is [[Rayleigh Number]] $Pr$ is [[Prandtl number]] $Nu$ is [[Nusselts number]] ## 1 Vertical Plate ### 1.1 Rough calculation $\bar{Nu_L}=CRa_L^n $ For laminar flow ($Ra_L < 10^9$): C = 0.59 and n = $\frac{1}{4}$ For turbulent flow ($Ra_L \ge 10^9$): C = 0.1 and n = $\frac{1}{3}$ Can also be used for vertical cylinders if $\frac{D}{L}\ge \frac{35}{Gr_L^{\frac{1}{4}}}$ ### 1.2 Churchill and Chu $Nu=0.68 + \frac{0.663 Ra_L^{1/4}}{[1+(0.492/Pr)^{9/16}]^{4/9}} \ \ \ \ \ \ while\ Ra_L \le 10^8$ ## 2 Horizontal Plate For horizontal plates the characteristic length must be calculated as $L = \frac{A}{P}$ ### 2.1 Upper surface of hot plate or lower surface of cold plate Top surface of a hot object in a cold environment or bottom surface of a cold object in a hot environment $\bar{Nu_L}=0.54Ra_L^{1/4}\ \ \ \ \ \ (10^4\le Ra_L \le 10^7)$ $\bar{Nu_L}=0.15Ra_L^{1/3}\ \ \ \ \ \ (10^7\le Ra_L \le 10^{11})$ ### 2.2 Lower surface of hot plate or upper surface of cold plate for the bottom surface of a hot object in a colder environment or top surface of a cold object in a hotter environment $\bar{Nu_L}=0.27Ra_L^{1/4}\ \ \ \ \ \ (10^5\le Ra_L \le 10^{10})$ Newer books have this equation $\bar{Nu_L}=0.52Ra_L^{1/5}\ \ \ \ \ \ (10^5\le Ra_L \le 10^{10})$ ## 3 Horizontal Cylinder ### 3.1 Churchill - Chu $\bar{Nu_D}=\left[0.60+\frac{0.387Ra_D^{1/6}}{[1+(0.559/Pr)^{9/16}]^{8/27}}\right]^2\ \ \ \ \ Ra_D \le 10^{12}$ ## 4 Rectangular Box From Incropera & Dewitt equation for Nusselts number a s a function of Rayleigh number is $\bar{Nu_L}=0.22\left( \frac{Pr}{0.2+Pr}Ra_L \right)^{0.28}\left(\frac{H}{L}\right)^{-(1/4)}$ for $\begin{bmatrix} 2<\frac{H}{L}<10 \\ Pr<10^5 \\ 10^3 < Ra_L <10^{10} \end{bmatrix} $ $\bar{Nu_L}=0.18\left( \frac{Pr}{0.2+Pr}Ra_L \right)^{0.29}$ for $\begin{bmatrix} 1<\frac{H}{L}<2 \\ <10^{-3}Pr<10^5 \\ 10^3 < \frac{Ra_L Pr}{0.2+Pr} \end{bmatrix} $ for larger aspect ratios H/L >10 please see book for another equation